- 1. Consider a particle of mass m in the one dimensional harmonic oscillator with frequency ω . At time t =0, the probability that the particle in state n = 2 is 3/5 and at state n =3 is 2/5.
 - (a) Write $\Psi(x,t)$.
 - (b) Calculate $\langle \hat{H} \rangle$
 - (c) Calculate $\langle x \rangle (t) \rangle$ and $\langle p \rangle (t)$
 - (d) Calculate $\langle N^2 \rangle$
- 2. Consider a particle of mass m in the one dimensional harmonic oscillator with frequency ω . At time t =0, the probability that the particle in state n $|c_n|^2 = |\frac{\alpha^n}{\sqrt{n!}}c_0|^2$, where $|c_0|^2$ is the probability for finding the particle at n=0 state.
 - (a) Find c_0
 - (b) Find $\langle x \rangle, \langle x^2 \rangle, \langle p \rangle$ and $\langle p^2 \rangle$
 - (c) Check the effect of a_{-} on the wavefunction at t = 0

Hint: You might want to do part c before part b