| Birzeit University |
| :---: | :---: |
| Department of Physics |
| Quantum Mechanics I, Phys433 |
| Fall 2020 |
| Homework 2: Due date Oct. 5th 2020 |

1. Consider a particle of mass m in the one dimensional harmonic oscillator with frequency ω. At time $t=0$, the probability that the particle in state $\mathrm{n}=2$ is $3 / 5$ and at state $\mathrm{n}=3$ is $2 / 5$.
(a) Write $\Psi(x, t)$.
(b) Calculate $<\hat{H}>$
(c) Calculate $\langle x\rangle(t)\rangle$ and $\langle p\rangle(t)$
(d) Calculate $<N^{2}>$
2. Consider a particle of mass m in the one dimensional harmonic oscillator with frequency ω. At time $t=0$, the probability that the particle in state $\mathrm{n}\left|c_{n}\right|^{2}=\left|\frac{\alpha^{n}}{\sqrt{n!}} c_{0}\right|^{2}$, where $\left|c_{0}\right|^{2}$ is the probability for finding the particle at $\mathrm{n}=0$ state.
(a) Find c_{0}
(b) Find $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle$ and $\left\langle p^{2}\right\rangle$
(c) Check the effect of a_{-}on the wavefunction at $t=0$

Hint: You might want to do part c before part b

